45 research outputs found

    Semi-Parametric Estimation and Inference for the Mean Outcome of the Single Time-Point Intervention in a Causally Connected Population

    Get PDF
    We study the framework for semi-parametric estimation and statistical inference for the sample average treatment-specific mean effects in observational settings where data are collected on a single network of connected units (e.g., in the presence of interference or spillover). Despite recent advances, many of the current statistical methods rely on estimation techniques that assume a particular parametric model for the outcome, even though some of the most important statistical assumptions required by these models are most likely violated in the observational network settings, often resulting in invalid and anti-conservative statistical inference. In this manuscript, we rely on the recent methodological advances for the targeted maximum likelihood estimation (TMLE) of causal effects in a network of causally connected units, to describe an estimation approach that permits for more realistic classes of data-generative models and provides valid statistical inference in the context of network-dependent data. The approach is applied to an observational setting with a single time point stochastic intervention. We start by assuming that the true observed data-generating distribution belongs to a large class of semi-parametric statistical models. We then impose some restrictions on the possible set of the data-generative distributions that may belong to our statistical model. For example, we assume that the dependence among units can be fully described by the known network, and that the dependence on other units can be summarized via some known (but otherwise arbitrary) summary measures. We show that under our modeling assumptions, our estimand is equivalent to an estimand in a hypothetical iid data distribution, where the latter distribution is a function of the observed network data-generating distribution. With this key insight in mind, we show that the TMLE for our estimand in dependent network data can be described as a certain iid data TMLE algorithm, also resulting in a new simplified approach to conducting statistical inference. We demonstrate the validity of our approach in a network simulation study. We also extend prior work on dependent-data TMLE towards estimation of novel causal parameters, e.g., the unit-specific direct treatment effects under interference and the effects of interventions that modify the initial network structure

    Causal inference for social network data

    Full text link
    We describe semiparametric estimation and inference for causal effects using observational data from a single social network. Our asymptotic result is the first to allow for dependence of each observation on a growing number of other units as sample size increases. While previous methods have generally implicitly focused on one of two possible sources of dependence among social network observations, we allow for both dependence due to transmission of information across network ties, and for dependence due to latent similarities among nodes sharing ties. We describe estimation and inference for new causal effects that are specifically of interest in social network settings, such as interventions on network ties and network structure. Using our methods to reanalyze the Framingham Heart Study data used in one of the most influential and controversial causal analyses of social network data, we find that after accounting for network structure there is no evidence for the causal effects claimed in the original paper

    Robust and Flexible Estimation of Stochastic Mediation Effects: A Proposed Method and Example in a Randomized Trial Setting

    Full text link
    Causal mediation analysis can improve understanding of the mechanisms underlying epidemiologic associations. However, the utility of natural direct and indirect effect estimation has been limited by the assumption of no confounder of the mediator-outcome relationship that is affected by prior exposure---an assumption frequently violated in practice. We build on recent work that identified alternative estimands that do not require this assumption and propose a flexible and double robust semiparametric targeted minimum loss-based estimator for data-dependent stochastic direct and indirect effects. The proposed method treats the intermediate confounder affected by prior exposure as a time-varying confounder and intervenes stochastically on the mediator using a distribution which conditions on baseline covariates and marginalizes over the intermediate confounder. In addition, we assume the stochastic intervention is given, conditional on observed data, which results in a simpler estimator and weaker identification assumptions. We demonstrate the estimator's finite sample and robustness properties in a simple simulation study. We apply the method to an example from the Moving to Opportunity experiment. In this application, randomization to receive a housing voucher is the treatment/instrument that influenced moving to a low-poverty neighborhood, which is the intermediate confounder. We estimate the data-dependent stochastic direct effect of randomization to the voucher group on adolescent marijuana use not mediated by change in school district and the stochastic indirect effect mediated by change in school district. We find no evidence of mediation. Our estimator is easy to implement in standard statistical software, and we provide annotated R code to further lower implementation barriers.Comment: 24 pages, 2 tables, 2 figure

    simcausal R Package: Conducting Transparent and Reproducible Simulation Studies of Causal Effect Estimation with Complex Longitudinal Data

    Get PDF
    The simcausal R package is a tool for specification and simulation of complex longitudinal data structures that are based on non-parametric structural equation models. The package aims to provide a flexible tool for simplifying the conduct of transparent and reproducible simulation studies, with a particular emphasis on the types of data and interventions frequently encountered in real-world causal inference problems, such as, observational data with time-dependent confounding, selection bias, and random monitoring processes. The package interface allows for concise expression of complex functional dependencies between a large number of nodes, where each node may represent a measurement at a specific time point. The package allows for specification and simulation of counterfactual data under various user-specified interventions (e.g., static, dynamic, deterministic, or stochastic). In particular, the interventions may represent exposures to treatment regimens, the occurrence or non-occurrence of right-censoring events, or of clinical monitoring events. Finally, the package enables the computation of a selected set of user-specified features of the distribution of the counterfactual data that represent common causal quantities of interest, such as, treatment-specific means, the average treatment effects and coefficients from working marginal structural models. The applicability of simcausal is demonstrated by replicating the results of two published simulation studies

    Comparing predictive abilities of longitudinal child growth models

    Get PDF
    © 2018 John Wiley & Sons, Ltd. The Bill and Melinda Gates Foundation's Healthy Birth, Growth and Development knowledge integration project aims to improve the overall health and well-being of children across the world. The project aims to integrate information from multiple child growth studies to allow health professionals and policy makers to make informed decisions about interventions in lower and middle income countries. To achieve this goal, we must first understand the conditions that impact on the growth and development of children, and this requires sensible models for characterising different growth patterns. The contribution of this paper is to provide a quantitative comparison of the predictive abilities of various statistical growth modelling techniques based on a novel leave-one-out validation approach. The majority of existing studies have used raw growth data for modelling, but we show that fitting models to standardised data provide more accurate estimation and prediction. Our work is illustrated with an example from a study into child development in a middle income country in South America
    corecore